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ABSTRACT 
 

In this paper, topology optimization (TO) is applied to determine the form, size and location 

of holes for the special form of perforated steel plate shear wall (PSPSW). The proposed 

model is based on the recently presented particular form of PSPSW that is called the ring-

shaped steel plate shear wall. The strain energy is selected as the objective function in the 

optimization. Simple Isotropic Material with Penalization (SIMP) method and the solution 

algorithms, including sensitivity and condition-based methods are utilized in the TO. Four 

initial plate forms are presented in the TO with regards to the length of the connection 

between the plate and column. Based on the solution methods and initial forms of the plate, 

eight scenarios are proposed and seven different perforated plates obtained using TO. The 

nonlinear responses of the optimized perforated plates are compared together, and with the 

ring-shaped model as a benchmark. The nonlinear analysis is conducted under cyclic and 

monotonic loadings. Key issues include cyclic and monotonic behavior, pinching behavior, 

stiffness, load-carrying capacity, energy dissipation, fracture tendency and out-of-plane 

deformation are investigated and discussed. The results demonstrate the optimized models 

have better behavior than the ring-shaped model without changing the volume of the plate. 

 
Keywords: topology optimization; perforated steel plate shear walls; SIMP method; sensitivity - 
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1. INTRODUCTION 
 

Steel plate shear wall (SPSW) is considered as an efficient lateral system in the seismic 

zones and tall buildings because of its special ability in the energy dissipation, ductility and 
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resistance degradation under cyclic loading. The shear plate of SPSW generates the 

horizontal shear resistance in a story using tension field action. Ductility and energy 

dissipation are mainly achieved through yielding of the web plate along the tension field 

direction. The axial forces due to tension field have a considerable impact on the seismic 

behavior of the edge columns [1]. Another feature of SPSW is the significant development 

of the post-buckling shear capacity that causes tension field action to be created. On the 

other hand, the buckling and out-of-plane deformation (OPD) of SPSW due to lateral forces 

lead to a decrease in the stiffness and create the pinching behavior [2]. 

 

 
Figure 1. Ring-shaped model (Specimen 2-13-1) 

 

There are two general approaches to improve the seismic performance of an SPSW. The 

first one is to enhance the out-of-plane stiffness of the plate and the second one is to provide 

a weak wall in front of a strong frame. Several studies have been carried out to increase the 

out-of-plane stiffness by making additional elements or new configuration of the SPSW. 

Using trapezoidal corrugated steel webs [3, 4], concrete panel on both sides of SPSW [5], 

vertical and horizontal plate stiffeners [6], additional diagonal elements [7] and braced steel 

shear panels [8] are the recent studies about the improvement of out-of-plane stiffness. 

Several researches have been conducted in the “strong frame-weak wall” field. For example, 

making a hole in the center of the plate or several holes in the plate [9], shear panel with 

vertical slits [10], steel plate shear wall with the low yield point material [11]. Wang, Yang 

[12] gave a comparative study on the seismic behavior of the SPSWs. The conducted studies 

indicate determining a suitable dimension and location for the holes has a considerable 

impact on the dynamic behavior of perforated steel plate shear wall (PSPSW). Egorova, 

Eatherton [13] introduced a special configuration of PSPSW that is called the ring-shaped 

steel plate shear wall. They improved the ductility, energy dissipation capacity and pinching 

behavior in cyclic loading through the mechanism of deforming a circular ring into an 

ellipse (see Fig. 1). Preparing the ring-shaped SPSW is very difficult in view of the cutting 

process and consequently increases the construction costs. But its behavior presents a new 

performance of SPSW in the simple frames. 

864.0

762.0

W
1
2
x
2
6

W
1
2
x
2
6

W
1
2
x
2
6

2-L8x4x7/16 Both Sides

7
1
1
.0

7
6
2
.0

5
6
.0

56.1

356.0

3
5
6
.0

R
1
5
0
.0

2-L8x4x7/16 Both Sides

2-L6x3-1/2X1/2  Both Sides

Shear Panel (t=12.7mm)

Pretension Bolts

 19mm A325

Pin Connection

500.0



TOPOLOGY OPTIMIZATION OF PERFORATED STEEL PLATE SHEAR WALLS ... 

 

459 

By considering the forms of PSPSWs and conducted studies, probably the most important 

question is “which form of the PSPSW is the best form, and how could it be achieved”. 

Topology optimization (TO) could be the best tool to find the optimal form of the perforated 

plates. TO is a mathematical method to optimize the performance of the structures based on an 

objective function and constraints. TO determines the best form of material configuration 

within a given design space, set of loads, boundary conditions and constraints. TO of solid 

structures involves the specification of features such as the number, location and shape of 

holes and connectivity [14]. Bendsøe and Kikuchi [15] introduced the first topological 

optimization that was named generalized layout optimization method. Their method was 

applied to an elastic and two-dimensional stress problem. Gradually, much progress was made 

in TO. Introducing different solution methods, TO of structures considering the nonlinear 

behavior of material [16] and geometry [17], using different elements such as shell elements 

[18], TO of structures with regards to buckling phenomenon [19] and the effects of dynamic 

loads in TO [20] are some of the improvements that are related to the object of this study. The 

conducted developments have led to the application of TO in the complex problems. 

Professional programs such as TOSCA structure, Altair Hypermesh and Genesis have also 

been released. They are frequently updated based on the latest advancements in TO. 

By taking a glance at the literature of TO, it is evident most of the conducted studies have 

been presented with the simple problems to illustrate their merits. It can be said one of the 

main purposes of the TO development is their use in the industrial and building structures in 

order to improve their performance and decrease their structural weight. So far, various 

studies have been done on the use of TO in industrial and building structures such as: 

topology of truss members [21-23], TO of concrete arch dams [24-26], TO of doms [27-29], 

masonry units with regard to heat loss [30], a side frame used in a railway freight wagon 

[31], GFRP bridge deck [32], braced frames under wind load using continuum, beam and 

column elements [33], bridge girder [34], continuum structures under buckling constraints 

[35], planar frames under seismic loads [36] and CFRP composites to retrofit beam-column 

connection [37]. 

Recently, a number of papers have been presented that used professional programs for 

TO of structures, such as: TO of roller bearing housing in order to maximize the bearing 

fatigue life using ANSYS and TOSCA [38], TO of vibro-acoustic hearing instrument based 

on minimization of the feedback signal and reduction of the time consumption using 

ABAQUS and TOSCA [39], TO of steel perforated I-sections in order to replace the 

traditional cellular beams using ANSYS and Altair Hypermesh [40], TO of a 12000KN fine 

blanking press using Altair Hypermesh [41] and TO of the photovoltaic panel connector in 

high-rise buildings using Altair Hypermesh [42] (see Fig. 2).  

In this study, size, shape and location of the holes are determined using TO in PSPSW. In 

the second section, the ring-shaped steel plate shear wall [13] is modeled in ABAQUS using 

a shell element, and the cyclic behavior of the numerical model is compared with the 

experimental specimen. In the third section, TO is applied to the model using TOSCA [43] 

that is combined with ABAQUS [44]. The objective function, constraints, stop conditions 

and solution methods are defined for TO procedure. The effects of the sensitivity and 

condition-based methods and initial plate forms are investigated on the TO procedure and its 

results. Seven different forms of PSPSW are obtained using TO. In the fourth section, the 

nonlinear responses of the seven optimized forms are compared under cyclic and monotonic 
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loadings. In this section, the structural properties including stiffness, load-carrying capacity, 

pinching behavior, energy dissipation, fracture tendency and OPD of the optimized 

perforated plates are discussed in detail and compared to the ring-shaped model. 

 

 
Figure 2. Topology optimization studies, (a) steel perforated beam [40], (b) fine blanking press 

[41], (c) roller bearing housing [38], (d) photovoltaic panel connector [42], (e) vibro-acoustic 

hearing instrument [39] 

 

 

2. MODELING AND CALIBRATION 
 

This section presents a detailed description for the numerical modeling of the ring-shaped 

steel plate shear wall using ABAQUS. The selected specimen (specimen 2-13-1) has the best 

performance among the proposed ring-shaped models (see Fig. 1). The yield stress and 

strain (σy, εy), ultimate stress and strain (σu, εu), modulus of elasticity (E), Poisson’s ratio 

(υ) and the stress-strain curve are shown in Fig 3.  

 

 
Figure 3. Stress-strain curve for finite element modeling 
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It is assumed all forces are transferred by the bolt connections. Accordingly, the 

connection of the shear plate to the perimeter frame is fully joined using the tie connection. 

At the pin connection, the plate is individually modeled and connected only at three points to 

the angle (L8×4×7/16). In the center of the web, rotation around the z-axis (Rz) and in the 

up and down of web rotation around the z-axis (Rz) and the transition on the x-y plane (Ux 

& Uy) are released. All degrees of freedom are constrained at the junction location of the 

holder frame to the ground (see Fig. 4). The nonlinear behavior of material and geometry is 

considered. The isotropic hardening rule is utilized for material properties [45, 46]. The 

automatic stabilization with the specified damping factor rule is used to investigate the 

surface wrinkling, material instability and local buckling. In the automatic stabilization 

method, a constant damping factor is utilized in any nonlinear quasi-static procedure based 

on the global equilibrium equation (Eq. (1)). 

 

𝑃 − 𝐼 − 𝐹𝑣 = 0.           𝐹𝑣 = 𝑐𝑀∗𝑣.            𝑣 =
∆𝑢

∆𝑡
 (1) 

 

where ∆𝑢 and ∆𝑡 are respectively the increment of displacement and time, 𝑣 is the vector of 

nodal velocities, 𝑀∗ is an artificial mass matrix calculated with unity density, 𝑐 is a damping 

factor, 𝐹𝑣 is viscous forces and 𝑃 and 𝐼 are the external and internal forces respectively. 

 

 
Figure 4. Finite element modeling 

 

The loading protocol is according to ATC-24 [47]. The displacement rate is held constant 

throughout the loading at 25 mm/min according to the experimental condition [13], so the 

protocol converts to a time history loading in which the total time is equal to 7410s. The 

target displacements and the number of cycles for each displacement level are given in Table 

Fixed Support

Applied Loading

Rz: Released

Rz, Ux, Uy: Released

Tie Connection
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1. The model is meshed using the 4-node reduced integration shell (S4R) element and 

analyzed through the general static module. 

 
Table 1: Imposed displacement on the structure based on ATC 24 

Level Target displacement (mm) Number of cycles Drift (%) 

1 2.2 3 0.25 

2 3.2 3 0.37 

3 4.3 3 0.5 

4 8.6 3 1.0 

5 13 3 1.5 

6 17.3 2 2.0 

7 21.6 2 2.5 

8 25.9 2 3.0 

9 34.5 2 4.0 

10 43.2 2 5.0 

11 51.8 2 6.0 

12 69.1 2 8.0 

13 86.4 2 10.0 

 

Load-deformation curves of the cyclic loading for the experimental and numerical 

models are indicated in Fig. 5. The numerical results agree reasonably well with the 

experimental results reported in Egorova, Eatherton [13]. It should be noted that the shear 

distortion angle in Fig. 5 is based on the actual vertical displacement of the plate according 

to the Ref [48]. The difference between the cyclic curves is because of the perfect condition 

of the numerical analysis and the hardening material modeling. The deformations in the last 

cycle are shown and compared with the experimental model. As shown in Fig. 6, the 

deformations of the numerical model comply appropriately with the experimental model. 

 

 
Figure 5. Force-deformation curve for numerical and experimental results 
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Figure 6. Comparison of deformations in the last step of loading, (a) experimental model [48], 

(b) numerical model 

 

 

3. TOPOLOGY OPTIMIZATION METHODOLOGY 
 

In the present section, the TO procedure and parameters are described. A TO problem could 

be written in a general form of a problem as Eq. (2) [49]: 

 

𝑂𝑝𝑡𝑖𝑚𝑖𝑧𝑒    𝑓(𝑥) 
𝑆𝑢𝑐ℎ 𝑡ℎ𝑎𝑡  ℎ𝑗(𝑥) = 0.                      𝑗 = 1.2. … . 𝑛ℎ 

𝑔𝑘(𝑥) ≤  0.                     𝑘 = 1.2.… . 𝑛𝑔 

𝑥𝑙
𝑖  ≤ 𝑥𝑖 ≤ 𝑥𝑢

𝑖 .                𝑖 = 1.2.… . 𝑛 

(2) 

 

where f is the objective function, gk and hj are the inequality and quality constraint functions, 

nh, ng and n are the number of equality constraints, inequality constraints and design 

variables, respectively. The values xi
l and xi

u are the lower and upper bounds on a typical 

design variable xi. 

 

3.1 Objective function, constraints and conditions 

Choosing an objective function to improve the behavior of a structure in all its aspects is 

very difficult. Also, the optimization based on several criteria is very complex and 

sometimes impossible. The main target of TO in this study is to improve the cyclic 

performance of the SPSW. Herein, maximization of the structural stiffness based on the 

strain energy is chosen as the objective function. Strain energy is the traditional and basic 

objective function that used to optimize the compliance and stiffness of a structure in TO 

[14, 50]. Based on the strain energy equation (Eq.3) and considering that the loading is 

imposed as a displacement pattern, the sum of strain energy of all elements must be 

maximized to increase the structural stiffness [43, 44]. 

 

∑𝑢𝑒
𝑇

𝑁

𝑒=1

𝑘𝑒𝑢𝑒 =
𝑅 × 𝐷

2
 (3) 

 

 

                  (a) Experimental deformation             (b) Numerical deformation and Von Mises stress contour 
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where 𝑢𝑒 and 𝑘𝑒 are displacement vector and stiffness matrix of the element, respectively. R 

is the reaction forces and D is the imposed displacement on the structure. Based on the plate 

area of the ring-shaped model (314423.23mm2), the volume constraint is activated and must 

be less than or equal to 54% of the fill plate volume. The objective function is assigned to 

the whole model, but the constraint is only considered on the plate. The nonlinear analysis is 

done on the TO for considering the nonlinear effects of the materials, geometry and 

buckling. The displacement is applied to the structure in such a way that nonlinear behavior 

and buckling are occurred on the plate. For this purpose, the structure is initially pulled 

down to 10% drift and then pulled up to 10% drift.  

For more appropriate comparison, the effect of connection length between the shear plate 

and L8×4×7/16 is considered. For this purpose, four initial plate forms are proposed for the 

TO procedure. As seen in Fig. 7, in the first case, the shear plate is fully connected to the angle 

(L8×4×7/16). In the second and third cases, the ratios of connection length to the shear plate 

length are respectively equal to 0.65 and 0.15. In the fourth case, the connection between shear 

plate and L8×4×7/16 is completely removed. It should be mentioned that the length of 

connection in the second and third case is based on the ring-shaped model (see Fig. 7).  

 

 
Figure 7. Initial forms of plate in TO (All dimensions are in millimeter) 

 

3.2 SIMP method 

The main purpose of TO is to eliminate the stiffness or mass of some elements with respect 

to the objective function and constraints. In each iteration of TO process and based on the 

solution method, some elements are deleted (E=0) and the other elements remained (E=1). 

SIMP (Simple Isotropic Material with Penalization) is one of the traditional methods to 

generate the relation between density and stiffness of elements. The idea of using a 

penalized variable density approach for numerically approximating the 0-1 design problem 

was studied by Bendsøe [51] and Yang & Chuang [52], and has since been used extensively. 

The SIMP material interpolation scheme is defined by Eq. (4): 

 

𝐸 = 𝐸0𝜌
𝑝 (4) 

 

where E0 is Young’s modulus of the fill or original element, E and ρ are the material 

stiffness and density of the unknown material, respectively, and p is the penalty exponents 

that must be more than 1 (p≥1). The numerical results of previous studies indicate p=3 is a 

suitable value [14]. 
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3.3 Solution method 

A TO problem based on the SIMP method in which the objective function (Θ) is to 

maximize the sum of strain energy can be written according to Eq. (5): 

 

max : Θ = 𝑈𝑇𝐾𝑈 =∑(𝜌𝑒)
𝑝 𝑢𝑒

𝑇

𝑁

𝑒=1

𝑘𝑒𝑢𝑒 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: 

{
 

 
𝑉(𝑥)

𝑉𝑜
= 𝑓

𝐾𝑈 = 𝐹
0 < 𝜌𝑚𝑖𝑛 < 𝜌𝑒 < 1

 

(5) 

 

where 𝑈 and 𝐹 are respectively the global displacement and force vectors, 𝐾 is the global 

stiffness matrix, 𝑢𝑒 and 𝑘𝑒 are respectively the displacement vector and stiffness matrix of 

elements, 𝜌𝑒 is the density of the elements (design variable), 𝜌𝑚𝑖𝑛 is the vector of minimum 

relative densities (𝜌𝑚𝑖𝑛=0.001), 𝑁 is the number of elements used to discretize the design 

domain, 𝑝 is the penalization power (𝑝 = 3), 𝑉(𝑥) and 𝑉0 are respectively the material 

volume and design domain volume, and 𝑓 is the prescribed volume fraction (𝑓 = 0.54). 
TO can be implemented through the use of optimization solution methods and finite 

element method. Several methods have been proposed to solve the Eq. (5) such as 

homogenization method, optimality criteria method (OC), level set, the method of moving 

asymptotes (MMA), genetic algorithms. In this paper, the OC and MMA methods are 

utilized as the solution methods in TO. These methods are the basic solution methods in TO 

[14]. The problem solving method and types of design responses which can be used to 

formulate the TO procedure are the main differences between these algorithms. 

 

3.3.1 Optimality criteria method (Condition - Based) 

OC method for continuum models was studied and developed by Prager and Taylor [53], 

Taylor [54] and Masur [55]. The OC or condition-based algorithm is used as a suitable 

approach for large-scale and structural problems [14]. This algorithm uses the strain energy 

and stresses at the nodes as input data without calculating the local stiffness of the design 

variables. In the initial step, the total mass is uniformly and fully distributed in the structure. 

In continue, the remaining mass is redistributed in the structure based on the strain energy 

density and according to the volume fraction. Using this method, the area of a structure with 

the high density of strain energy has more mass density. In summary, the OC method uses 

an effective algorithm for optimization, but it is only used for structural problems. 

Moreover, the strain energy and volume fraction must be selected as the objective function 

and constraint, respectively [14, 56]. The following fix-point type update scheme (Eq. (6)) is 

used for the density variables [14]: 

 

𝜌𝑒
𝑛𝑒𝑤 = {

max(𝜌𝑚𝑖𝑛. 𝜌𝑒 −𝑚) .                                       𝑖𝑓 𝜌𝑒𝐵𝑒
𝜂
≤ max(𝜌𝑚𝑖𝑛. 𝜌𝑒 −𝑚)

𝜌𝑒𝐵𝑒
𝜂
.                              𝑖𝑓 max(𝜌𝑚𝑖𝑛. 𝜌𝑒 −𝑚) ≤ 𝜌𝑒𝐵𝑒

𝜂
≤ min(1. 𝜌𝑒 +𝑚)

min(1. 𝜌𝑒 +𝑚).                                                𝑖𝑓 min(1. 𝜌𝑒 −𝑚) ≤ (𝜌𝑒𝐵𝑒
𝜂
) 

 (6) 
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where 𝑚 is a positive move-limit, 𝜂 is a numerical damping coefficient and 𝐵𝑒 is 

determined from the optimality condition and using Lagrangian multiplier (𝜆) according 

to Eq. (7): 
 

𝐵𝑒 =
−
𝜕Θ
𝜕𝜌𝑒

𝜆
𝜕V
𝜕𝜌𝑒

 .                   
𝜕Θ

𝜕𝜌𝑒
= −𝑝(𝜌𝑒)

𝑝−1 𝑢𝑒
𝑇𝑘𝑒𝑢𝑒 (7) 

 

3.3.2 Sensitivity analysis (Sensitivity-Based) 
In the sensitivity-based algorithm, the density and stiffness of the design variables are 

simultaneously adjusted with trying to satisfy the objective function and the constraints. To 

obtain the optimal value, this algorithm uses the sensitivity analysis based on the design 

variables considering the objective function and constraints. The sensitivity analysis could 

be applied to all types of structural and non-structural optimization problems. In addition, 

the various types of objective functions such as strain energy, reaction forces, eigenvalues, 

etc. could be applied in this method [14, 56]. The major challenge is to apply a mathematical 

programming that is well geared to cope with many design variables and typically a 

moderate number of constraints. MMA is a mathematical programming algorithm well 

suited for topology design. In this method, a strictly convex approximation sub-problem is 

generated and solved in each step of the iteration [57]. MMA approximation uses the 

following scheme (Eq. (8)) to update the design variables [14]: 

 

Optimize {Θ(𝜌𝐾) −∑(
(𝜌𝑒

𝐾 − 𝐿𝑒)
2

𝜌𝑒 − 𝐿𝑒
×
𝜕Θ

𝜕𝜌𝑒
(𝜌𝐾))

𝑁

𝑒=1

} (8) 

 

where 𝑣𝑒 is the volume of elements. 

 

3.4 Stop conditions 

The main stop condition of TO is the number of iterations. Furthermore, two convergence 

criteria are defined as the stop criterion in the TO. The first stop criterion (𝑙1) is the amount 

of changes in the objective function (Θ) from one iteration (𝑛) to the next iteration (𝑛 + 1). 
This stop criterion is defined by Eq. (9): 

 
|Θn+1 − Θn|

|Θn+1|
≤ 𝑙1 (9) 

 

The second stop criterion (𝑙2) is based on the changes in the densities (𝜌) of each 

element from one iteration (𝑛) to the next iteration (𝑛 + 1) and defined by Eq. (10): 

 

∑ |𝜌𝑛+1 − 𝜌𝑛|
𝑁
1

𝑁
≤ 𝑙2 (10) 
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In this paper, the maximum number of iterations in the sensitivity and condition-based 

methods is respectively set to 50 and 30. In addition, at least four iterations must be 

conducted to terminate TO. The stop criterions 𝑙1 and 𝑙2 are equal to 0.001 and 0.004 

respectively. When the stop criterions (𝑙1.  𝑙2) achieve the determined values (0.001, 0.004), 

the TO is terminated without finishing the number of iterations. Note that the number of 

iterations is determined using trial and error on the models to obtain a clear optimized 

topology. The steps of TO are summarized in the flowchart of Fig. 8. 

 

 
Figure 8. Topology optimization flowchart 

 

3.5 Optimization results 

By considering types of the solution method and initial plate form, eight scenarios are 

proposed for TO. The details of scenarios are given in Table 2. Based on the proposed 

scenarios, eight perforated plates are obtained. The changes of plate topology during 

optimization are shown in Fig. 9 and Fig. 10 for condition and sensitivity-based method, 

respectively. Furthermore, the values of the objective function and volume fraction during 

TO are shown in Fig. 11 for the condition-based and Fig. 12 for the sensitivity-based 

method. Considering the presented results in Figs. 9-12 the following consequences could be 

inferred.  
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Table 2: Condition of topology optimization scenarios and results (CB: Condition-Based, SB: 

Sensitivity-Based) 

Model 

name 

(Case 

No) 

Solution 

method 

Initial 

volume 

fraction 

Final 

volume 

fraction 

Initial objective 

function (kN.m) 

Final objective 

function 

(kN.m) 

Number 

of 

iterations 

C1 1 CB 1 0.547 225.718 208.504 28 

C2 2 CB 1 0.549 221.462 176.307 28 

C3 3 CB 1 0.548 208.908 137.080 28 

C4 4 CB 1 0.548 179.976 115.839 29 

S1 1 SB 0.54 0.540 158.543 231.591 26 

S2 2 SB 0.54 0.539 123.457 211.141 26 

S3 3 SB 0.54 0.539 57.612 161.979 25 

S4 4 SB 0.54 0.540 44.862 147.526 26 

 

About the updating scheme of density in the condition-based method, it can be seen that 

in the initial iteration, the fraction density of whole elements in the plate is equal to 1. In 

continue, by using OC and SIMP methods (Eq. 4, 5, 6 & 7), a new value of density for each 

element is obtained (see Fig. 9 and Fig. 11). Based on the number of iterations, volume 

fraction and objective function the density of elements is reduced and the elements 

eliminated. As seen in Fig. 11 and Table 2, the volume fraction (constraint) is decreased 

about 46% during TO while the decrease of strain energy (objective function) for C1, C2, 

C3 and C4 is respectively equal to 7.63%, 20.4%, 34.4% and 35.6%.  

In the sensitivity-based method, the density of all elements is reduced to the prescribed 

volume fraction (0.54) in the initial iteration. In continue, the effective elements to maximize 

the objective function are identified using sensitivity analysis and their densities are increased. 

On the other hand, the density of the other elements is reduced or eliminated. Despite the 

condition-based method, in the sensitivity-based method, the volume fraction is approximately 

constant during TO while the strain energy objective function is increased for S1, S2, S3 and 

S4 about 47%, 71%, 181% and 228% , respectively (See Fig. 12 and Table 2).  

The number of iterations in Table 2 illustrates that stop criterions are dictated and the TO 

is terminated without reaching the total number of iterations. As shown in Fig. 11 and Fig. 

12, the changes in the topology become very tiny by the increase of iterations. So, the stop 

criterions prevent from doing extra iterations with regards to time-consuming of doing 

nonlinear analysis in each iteration. Also, the results prove that the defined values for the 

stop criterions are suitable because the obtained topologies are clear and the density of all 

remained elements (except a few elements in the boundaries) is reached to 𝜌𝑛 = 1. It can be 

seen from Fig. 11 and Fig. 12 that no slim part is created in optimization. The nonlinear 

analysis prevents the creation of the slim parts in the TO process because they can't increase 

the structural strength in nonlinear analysis. 
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Figure 9. Changes in density contour of the plate in the condition-based method 

 

 
Figure 10. Changes in density contour of the plate in the sensitivity-based method 

 

The obtained forms using TO indicate that in both solution methods, except in case 4, a 

hole is created in the center of the plate. The TO results prove the amount of length 

connection impacted on the optimized topology. The optimized form for the full connected 

plate has a central hole in both solution methods (C1 and S1). It illustrates that the 

 
Model: C1          Iteration: 1            Iteration:5             Iteration:9             Iteration:18           Iteration:28 

 
Model: C2          Iteration: 1            Iteration:8             Iteration:12            Iteration:18           Iteration:28 

 
Model: C3          Iteration: 1            Iteration:9             Iteration:18            Iteration:20          Iteration:28 

 
Model: C4         Iteration: 1            Iteration:6             Iteration:12            Iteration:18           Iteration:29 

Model: S1          Iteration: 1            Iteration:9             Iteration:17             Iteration:19           Iteration:26

Model: S2          Iteration: 1            Iteration:5             Iteration:8             Iteration:15           Iteration:26

Model: S3          Iteration: 1            Iteration:8             Iteration:12            Iteration:16           Iteration:25

Model: S4          Iteration: 1            Iteration:6             Iteration:11            Iteration:15           Iteration:26 
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traditional form of the perforated plate with a central circular hole is an optimal form. The 

optimized form converges to the X-shaped for both solution methods, when the connection 

between the plate and column is completely removed (C4 and S4). The optimized forms for 

0.15 connection length ratio (l/L=0.15) are generally similar for both solution methods and 

have a central hole (C3 and S3). But the obtained optimized form using the sensitivity-based 

method is completely different from the condition-based method when the connection length 

ratio is equal to l/L=0.65 (C2 and S2). 

 

 
Figure 11. Objective function and volume fraction for condition-based method 

 

 
Figure 12. Objective function and volume fraction for sensitivity-based method 

 

Finally, based on the obtained forms using TO and considering the similarity of results in 

case “4”, seven optimized forms are proposed (see Fig. 13). The presented dimensions are 

according to the TO results. As shown in Fig. 13, the area of optimized plates is 

approximately equal to the area of the ring-shaped plate (314423mm2). 
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Figure 13. Proposed optimized forms (all dimensions are in millimeter) 

 

 

4. NONLINEAR BEHAVIOR OF SPSWS WITH OPTIMIZED TOPOLOGY 
 

4.1 Cyclic and monotonic behavior 

In the present section, the nonlinear behavior of the optimized models is thoroughly studied. 

For this purpose, a nonlinear analysis is conducted under cyclic and monotonic loadings for 

all the optimized models. The cyclic loading is according to ATC 24 protocol that was 

presented in the second section. The maximum displacement in the monotonic loading is 

equal to 86.4mm. All the parameters and specifications of the numerical models are defined 

the same as the proposed numerical finite element model in the second section. 

The results of nonlinear analysis due to cyclic loading are presented in Fig. 14. With 

comparing the cyclic curves, it can be seen that the pinching behavior occurs in all the 

models, but the intensity of pinching is different. Pinching behavior is related to buckling 

and OPD of the plate. On the other hand, the increase in strength at the end of each loop is 

due to the tension field action and post-buckling phenomenon. As seen in Fig. 14, in the C2 

and CS4 model the initial stiffness decreases sharply due to buckling and OPD. For a better 

comparison, the pushes of cyclic curves are presented in Fig. 15. The results indicate the C1 

and RS models have the maximum and minimum strength respectively. In addition, the 

stiffness is decreased after the initial cycles in all the optimized models, but the strength of 

the RS model is approximately constant during cyclic loading. However, because of tensile 

field action, the pushes of the cyclic curves for optimized models have more values than the 

RS model. 
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Figure 14. Force-deformation curve for cyclic loading 

 

For a clear review, the curves of the last loop are indicated in Fig. 16. The results 

illustrate the S1 model has more stiffness and encloses more space than the other models. It 

also appears in the C1 model, but the stiffness and enclosed space by the curve are less than 

the S1 model. In comparison to the RS model, the C2, C3, S2, S3 and CS4 models have 

more strength in the tensile filed action zone, but their strengths are decreased in the 

pinching zone.  

 

 
Figure 15. Push of cyclic curves 

 

The results of monotonic loading indicate, like cyclic push curves, the C1 and RS models 

have the maximum and minimum values of strength respectively (see Fig. 17). For the C1 

and CS4 models, strength reduction occurs in the monotonic curves at the 9.6% and 4.6% 

drift respectively. This reduction is due to the buckling and OPD of the plate. It can be seen 

from Fig. 17 that the models with similar connection length ratio have equal strength.  
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Figure 16. Force-deformation curve in the last loop 

 

 
Figure 17. Force-deformation curve for monotonic loading 

 

4.2 Stiffness and load-carrying capacity 

For investigating the stiffness of the RS and optimized models, the initial (Ki) and secant 

stiffness (Ks) based on the monotonic loading are compared. The secant stiffness is related 

to the position with 2.5% inter-story drift angle (2.5% is the maximum inelastic drift 

according to UBC97 [58]. The method of defining the initial and secant stiffness is 

according to Fig. 18. Furthermore, according to the monotonic loading, the value of reaction 

force at yield point (Py), the maximum value of the reaction force (Pmax) and the value of 

reaction force at 10% drift (Pu) are measured (see Fig. 18). Also, the maximum value of 

reaction force in the cyclic loading (Pn) is calculated. The numerical results related to 

stiffness and strength of the RS and optimized models are presented in Table 3. The results 

indicate that the stiffness and load-carrying of all the optimized models are significantly 

increased. The maximum values of initial stiffness and secant stiffness belong to the C1 and 

S1 models respectively. The S1 model has the maximum values of Py, Pmax, Pu and Py, 

and the minimum values of stiffness and strength belong to the RS model. 
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Table 3: Values of stiffness (kN/mm) and strength (kN) for ring-shaped and optimized models 

Models Ki Ks Py Pmax Pu Pn 

RS 90 11 204 304 304 353 

C1 288 46 900 1196 1105 1092 

C2 284 37 692 1030 1030 992 

C3 244 30 488 841 841 786 

S1 280 47 912 1287 1287 1097 

S2 284 37 660 1023 1023 945 

S3 251 28 421 814 814 709 

CS4 159 27 486 636 450 615 

 

 
Figure 18. Initial and secant stiffness 

 

For an appropriate comparison between the models, the ratio of stiffness and strength of 

the optimized models to the RS model are respectively shown in Fig. 19 and Fig. 20Figure 2. 

The initial stiffness for all optimized models (except CS4) is near 2.5~3 times of the RS 

model. The secant stiffness for C1 and S1 is near 4.0, for C2 and S2 near 3.2, for C3 and S3 

near 2.5, and for CS4 near 2.4 times of the RS model. The strength of optimized models is 

dramatically increased. The yield and maximum strength of the optimized models are 

increased near 2~4 times of the RS model. Furthermore, enhancement of maximum reaction 

force in the cyclic loading (Pn) is near 1.7~3 times of the RS model. 

 

 
Figure 19. Ratio of stiffness of optimized models to the RS model 
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Figure 20. Ratio of strength of optimized models to the RS model 

 

4.3 Energy dissipation and fracture tendency 

The area under a load-deformation curve is equal to the energy dissipation (ED). ED of a 

structure is an index that includes principal components such as stiffness, strength and 

ductility. Fig. 21 shows ED of the RS and optimized models during the cyclic loading. By 

considering the Fig. 21, it can be seen that the difference between ED curves is observed 

after cycle 10. The S1 model has the best performance in ED, and the C1 and S2 models are 

respectively in the next ranks. The ED of C2 and C3 is similar and ED curve of S3 model is 

located at the top of C2 and C3 curve with a slight difference. Despite the increase of ED 

from the cycle 10 to 26 for the C2 and C3 models compared to the RS model, the curves of 

three models (C2, C3 and RS) after cycle 27 are very close to each other. The CS4 model 

has the weakest performance in the ED. The values of ED at the end of cyclic loading are 

presented in Table 4.  

 

 
Figure 21. Energy dissipation during cyclic loading 

 

Investigating the fracture tendency in the RS and optimized models is very important in 

order to judge their cyclic performance. An increase in the stiffness and energy dissipation 

of a structure is useful if it does not enhance the structural fracture tendency. The fracture 

tendency can be predicted by the equivalent plastic strain (PEEQ) defined by Eq. (11). 

PEEQ is described as a cumulative variable and a monotonically incremental function. This 

index represents the local ductility and fracture tendency of steel [44]. 
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𝑃𝐸𝐸𝑄 = 𝜀̃̇𝑝𝑙|0 +∫ 𝜀̃̇𝑝𝑙
𝑡

0

𝑑𝑡 .  𝜀̃̇𝑝𝑙 = √
2

3
𝜀̇𝑝𝑙: 𝜀̇𝑝𝑙 (11) 

 

where 𝜀̇𝑝𝑙 is the rate of plastic flow, 𝜀̃̇𝑝𝑙 is the equivalent plastic strain rate and 𝜀̃̇𝑝𝑙|0 is the 

initial equivalent plastic strain rate. The values of PEEQ in at the end of cyclic loading are 

represented in Table 4. 
 

Table 4: Values of ED, PEEQ and OPD in the last cycle 

Models ED (kN.m) PEEQ OPD (mm) 

RS 696.05 29.16 72.00 

C1 1071.39 17.60 121.60 

C2 696.21 16.20 131.00 

C3 711.96 17.65 136.50 

S1 1386.05 25.13 111.90 

S2 858.25 6.10 113.70 

S3 769.36 13.63 133.70 

CS4 485.63 6.43 130.50 

 

The results in Table 4 illustrate that the minimum and maximum values of PEEQ belong 

to the S2 (PEEQ=6.1) and RS (PEEQ= 29.16) models respectively. S1 model has the 

maximum value (25.13) of PEEQ between the optimized models. The position and 

distribution of PEEQ in the models are shown in Fig. 22 (red circle). By considering Table 4 

and Fig. 22, it can be seen that the main reason for the high amount of PEEQ in the RS 

model is the stress concentration at the corner of the ring part. In the optimized models, the 

stresses in the plate are more appropriately distributed so the values of PEEQ are reduced. 

As shown in Fig. 22, the S2 model has the highest stress distribution in the plate and 

consequently the PEEQ value is decreased. The difference between S2 and the other models 

is considerable in the PEEQ. The reason for this decrease relates to the topology of the plate 

in the S2. The obtained form in the S2 could create various patches for stress distribution 

and then plastic strains are distributed with less intensity. 

The maximum values of OPD of the models are shown in Table 4. The results show RS 

and C3 models have the lowest and highest values of OPD. The position of OPD is shown in 

Fig. 23 with a red circle (dashed line). Increasing the values of OPD in the optimized models 

often causes the exacerbation of pinching behavior. On the other hand, the results indicate 

that this increase reduces the fracture tendency. In fact, the OPD dissipates the stresses 

through post-buckling phenomenon and improves the tension field action in the plate.  

For a desirable comparison between the RS and optimized models, the ratios of ED, 

PEEQ and OPD of the optimized models to the RS model are presented in Fig. 23. It can be 

seen from Fig. 23 that in comparison to the RS model, the values of ED are increased about 

54% for C1, 99% for S1, 23% for S2 and 11% for S3 models. The ED values in the C2 and 

C3 models are not improved and even decreased about 30% in the CS4 model. The values of 

PEEQ with respect to the RS model are reduced near 40% for C1, C2 and C3 models, 14% 

for S1, 53% for S3 and 80% for S2 and CS4 models. The OPD values of all the optimized 

models are increased. The highest and lowest enhancements belong to C3 and S1 models, 

respectively that are equal to 1.90 and 1.55 times of the RS model.  
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Figure 22. PEEQ contour at the end of cyclic loading, max PEEQ (red circle) and max OPD 

(dashed red circle) 

 

 

 
Figure 23. Ratio of energy dissipation, equivalent plastic strain, and out-of-plane deformation of 

optimized models to the ring-shaped model 
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5. ACCEPTABLE AND UNACCEPTABLE FORMS 
 

Herein, a brief description and clear decision are presented about the optimized forms based 

on the obtained results in the fourth section. 

- S1 model (acceptable): no significant strength reduction is observed in the cyclic loading. 

The push of load-deformation in the cyclic loading is the best. It is the best with 

significant difference in the pinching zone. No strength reduction in the monotonic 

loading is observed. It is the best in the energy dissipation. In this model, the fracture 

tendency is maximum between the optimized models but less than the RS model. 

- S2 model (acceptable): in comparison with the RS and optimized models, the fracture 

tendency is decreased significantly (near 80%). The strength and stiffness are increased 

near 3 times of the ring-shaped model. Also, ED is enhanced about 23% in comparison to 

the ring-shaped model. This model has suitable performance in both the increase of 

strength and decrease of fracture tendency. 

- S3 model (unacceptable): the PEEQ has reduced about 53% in comparison with RS 

model. In the energy dissipation, it is located in the fourth rank and better than the RS 

model (11% at the end of cyclic loading). The pinching behavior is near to the S2 model. 

Compared to model S2, the choice is not logical. 

- C1 model (unacceptable): a significant strength degradation is observed in the monotonic 

loading. Despite a tiny difference in geometry comparing with S1, a considerable 

reduction occurred in the strength, pinching behavior and energy dissipation.  

- C2 model (unacceptable): after primary structural stiffness, the push of cyclic loadings is 

less than the S2 model. Energy dissipation, fracture tendency and pinching behavior are 

weak in comparison to S2. Compared to model S2, the choice is not reasonable. 

- C3 model (unacceptable): in comparison with the other optimized models it is located in 

the sixth rank and the choice is not reasonable. 

CS4 model: (unacceptable): the push of cyclic loading is near to the RS model. Energy 

dissipation is less than RS. A significant strength degradation is observed in the monotonic 

loading. 

 

 

6. CONCLUSION 
 

In this paper, the effect of connection length between column and shear plate was 

investigated in the TO results. Also, the effect of two basic solution methods in the results of 

optimization was considered. The main findings in the TO process and results briefly 

include the followings: 

1. The changes in the connection length between the shear plate and column were 

significantly impacted on the TO results. 

2. The TO results with the use of sensitivity and condition based method for l/L=0 were 

completely similar, for l/L = 1 and l/L =0.15 had a partially different and for l/L=0.65 

were completely different. 

3. The TO results proved that a plate with a central circular hole (the traditional form of a 

perforated plate) could be an optimal form for the shear plate with l/L =1.  
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4. Doing nonlinear analysis in each iteration of TO prevented from creating slim parts in 

the optimized plate. 

All optimized models were analyzed under cyclic and monotonic loadings and the results 

compared with the RS model. The results indicated that a small change in the holes could 

cause a major change in the structural behavior. For example, although there was a very tiny 

difference between obtained topology for S1 and C1, the results showed the behavior of S1 

in cyclic and monotonic loadings, pinching behavior and energy dissipation is better than the 

C1 despite the area of the plate in S1 model being less than C1. To summarize the 

investigation of the analysis, the results are briefly discussed in six topics: 
1. Stiffness and load-carrying: The stiffness and load-carrying capacity of all the optimized 

models have significantly improved compared with the RS model. S1 and CS4 models 

had the maximum and minimum values of stiffness and strength respectively between the 

optimized models.  

2. Energy dissipation: The energy dissipation of S1, C1, S2 and S3 models has respectively 

increased near 99%, 54%, 23% and 11% compared with the RS model. There was no 

improvement for C2 and C3 models, and even a reduction near 30% was observed in the 

CS4 model. 

3. Fracture tendency: The fracture tendency was predicted using the equivalent plastic strain 

(PEEQ). The values of PEEQ for all optimized models have reduced in comparison with 

the RS model. It was observed that the stress distribution and consequently PEEQ 

distribution in the optimized models were more appropriate than the RS model. The 

values of PEEQ in S1 and S2 models were equal to 86% and 21% of the RS model 

respectively.  

4. Pinching behavior: The buckling and out-of-plane deformation (OPD) are two effective 

parameters in the pinching behavior. In the optimized models, S1and C1 had the best 

pinching behavior. In the other optimized models, no improvement in the pinching 

behavior was observed in comparing with the RS model. The values of OPD in all 

optimized models were more than the RS model. Although decreasing of OPD in the RS 

model improved the pinching behavior, but increasing OPD and buckling caused an 

improvement in the tension field action and PEEQ. 

5. Connection length ratio: The results illustrated the stiffness and fracture tendency were 

increased with the increase of connection length ratio (l/L). In an overall view and based 

on the results, a balance between the stiffness and fracture tendency was observed for the 

connection length ratio l/L=0.65. 

6. TO solution methods: The nonlinear behavior of the optimized plate indicated the 

obtained optimized plates by the sensitivity-based method (especially S1 and S2 models) 

had better performance in comparison with the condition-based method. 

Based on the presented results, the S1 and S2 models are two acceptable forms as a 

perforated steel plate shear wall. In the S1 model, the stiffness, strength and energy 

dissipation dramatically increased. In this model, the pinching behavior was completely 

suitable, and the fracture tendency reduced near 14% compared with the RS model. In the 

S2 model, the stiffness and strength increased by about 300%, the energy dissipation 

increased about 23% while the value of PEEQ reduced about 80% compared with the RS 

model. This model presented a balanced behavior for both stiffness and fracture tendency. 
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